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Correlations in the isotropic phases of chiral liquid crystals: The role of helicity modes
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The phenomenological theory of chiral liquid crystals is further developed by generalizing the model of
self-consistent correlations@J. Englert, L. Longa, H. Stark, and H.-R. Trebin, Phys. Rev. Lett.81, 1457~1998!#.
In the present approach, not only a leading helicity mode of the tensor order parameter is retained but also the
remaining four modes. By considering a full fluctuating spectrum of the order parameter, the role of correla-
tions between helicity modes in the isotropic phases is studied. Additionally, an exact form of the two-point
correlation function in real space is derived and its properties are thoroughly discussed. It is shown that for
chiral isotropic liquids purely chiral modes could be identified that do not exist for an ordinary liquid. Detailed
results of the numerical calculations are compared with those obtained from the earlier model and these show
regions where the coupling between the modes becomes important, in agreement with the available experi-
mental data. Though the analysis up to first-order cumulant expansion does not predict a direct phase transition
between the blue phase III and the isotropic phase, it is fairly easy to identify two differently correlated regions
in a temperature-chirality plane. Various structural quantities, such as optical activity and specific heat, also
reveal a behavior characteristic of two isotropic phases with different correlation lengths.
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I. INTRODUCTION

In our previous publications@1,2#, we have demonstrate
that correlations between orientational degrees of freed
are crucial for a proper understanding of phase diagra
involving isotropic, cholesteric, and cubic blue phases.
particular, we showed that it is possible to construct a s
tematic perturbational scheme to account for the comple
of the phase diagram for blue phases. In the previous an
sis, however, we neglected the coupling between the mo
of the tensor order parameter. Only the leading order ca
lations, including them52 helicity mode of the tensor orde
parameter, have been carried out.

On the other hand, experiments show that other heli
modes and coupling between them may become importa
the pretransitional regime@3–7#. For example, light scatter
ing in the isotropic phase gives a possibility to observe
five helicity modes. There are also correlations between
modes as probed, e.g., by optical activity experiments.

In the present approach, we systematically includeall five
helicity modesinto a field theoretical treatment of the isotr
pic phases with Landau–de Gennes Hamiltonian. We a
study the coupling between the modes and show explic
the existence of this coupling in the pretransitional regime
theoretical level. In addition, our analysis also provides
simple measure of chirality in the isotropic phase, in terms
invariant tensors extracted from real-space correlation fu
tions. A semiphenomenological approach to this proble
valid in the vicinity of the isotropic–blue phase III~BP III!
phase transition, has been proposed in the literature@8#.

This paper is organized as follows. After a brief discu
sion of the statistical field theory, we derive an exact rep
sentation of pair correlations in the isotropic phase and
cuss a possible relation to phase chirality. Then, we desc
a general perturbation scheme based on an effective Ha
tonian, which depends on five variational parameters. Th
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play the role of the inverse square roots of the correlat
lengths for the alignment tensor field. Using a cumulant
pansion and variational calculus, we explicitly show that t
five modes are not only visible in the pretransitional regi
but also are strongly coupled. Our cumulant expansion
limited to leading order as previously. A third-order expa
sion with the exact Hamiltonian is still extremely comp
cated and demanding and is reserved for future work. In
last section, we apply the theory to calculate observab
such as the rotatory power.

II. THEORY OF ORIENTATIONAL ORDER IN
CHOLESTERIC LIQUID CRYSTALS

An average orientational order in liquid crystals is be
quantified in terms of the symmetric and traceless alignm
tensor fieldQ(r). The Landau–Ginzburg–de Gennes Ham
tonian, also known as free energy functional of chiral liqu
crystals, follows then from a series expansion inQ(r) and its
derivatives. In real space, it reads@9#

H5H21H31H4 , ~1!

where

H25
1

2EV
d3r@aTr~Q2!1c1Qi j ,lQi j ,l1c2Qi j ,iQl j ,l

22de i j l QinQln, j #, ~2!

H352
b

A24
E

V
d3rTr~Q3!, H45

g

24EV
d3r@Tr~Q2!#2.

~3!
©2003 The American Physical Society05-1
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The stability of the expansion~1! requires thatc2.2 3
2 c1

and g.0. Additionally, as usual in Landau theory, the p
rametera is the temperature distance from the spinodala
5a0(T2T* ) with a0.0.

The impact of the fluctuations of orientational degrees
freedom can now be analyzed with the formalism of stati
cal field theory. For example, the free energy and the o
nary two-point correlation function are given by

F52kBT lnZ, Z5E DQexp~2H/kBT!, ~4!

G̃abgd~r,r8!5^Qab~r!Qgd~r8!&

5Z21E DQQab~r!Qgd~r8!exp~2H/kBT!,

~5!

where the symbol*DQ denotes the integral over the tens
field Q. Note thatG̃abgd(r,r8) is a component of the fourth
rank 3333333 tensorG̃5^Q(r) ^ Q(r8)&.

Practical calculations involving Eqs.~4! and ~5! are car-
ried out in the momentum representation as it diagonal
H2. It amounts to expandingQ(r) into a Fourier series and
spin tensor modes of momentumL52, and yields

Q~r!5(
k̃

(
m522

2

Qm~ k̃!Mm~ k̂!ei k̃•r. ~6!

The basis matricesMm( k̂) are defined separately for eac
wave vector directionk̂ and m labels the different helicity
on
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modes. In a right-handed local system of orthonormal u
vectors$ĵ,ĥ,k̂5 k̃/ k̃%, the basis matrices read

M0~ k̂!5
1

A6
~3k̂ ^ k̂21!,

M1~ k̂!5
1

A2
~u^ k̂1 k̂^ u!5@M21~ k̂!#* ,

M2~ k̂!5u^ u,5@M22~ k̂!#* , ~7!

whereu51/A2(ĵ1 iĥ), k̃5uk̃u, and

Mm~ k̂!•Mm8
* ~ k̂![Tr@Mm~ k̂!Mm8

* ~ k̂!#5dmm8 . ~8!

In the reciprocal space and in the dimensionless variable
Grebelet al. @9#,

x5r/jR , k5 k̃jR , v5V/jR
3 ,

mm~k!5Qm~k!/s, H5gs4H,

s5b/A6g, k5jRd/c1 , r5c2 /c1.2
3

2
, T5kBTgs4,

t52a/gs25a0~T2T0!/T0 , a0.0, jR5A2c1 /gs2,

~9!

the Hamiltonian~1! becomes@1,2#
H/v5
1

4 (
k

(
m

H t2mkk1F11
1

6
r~42m2!Gk2J umm~k!u22

1

2 (
k1 ,k2 ,k3

(
m1 ,m2 ,m3

Tr@Mm1
~ k̂1!Mm2

~ k̂2!Mm3
~ k̂3!#

3mm1
~k1!mm2

~k2!mm3
~k3!dk11k21k3 ,01

1

24 (
k1 ,k2 ,k3 ,k4

(
m1 ,m2 ,m3 ,m4

Tr@Mm1
~ k̂1!Mm2

~ k̂2!#Tr@Mm3
~ k̂3!Mm4

~ k̂4!#

3mm1
~k1!mm2

~k2!mm3
~k3!mm4

~k4!dk11k21k31k4 ,0 . ~10!
In deriving Eq.~10!, use has been made of the normalizati
1/v*veik•xd3x5dk,0 and of the reality conditionmm(2k)
5(21)mmm* (k) for the field Q(r). For the transformed
Hamiltonian, Eqs.~4! and ~5! read

Z5E Dm exp~2H/T!, ~11!

and the dimensionless correlation function is given by
G~x,x8!5s22G̃~x,x8!

5 (
k1 ,m1
k1,L

(
k2 ,m2
k2,L

Mm1
~ k̂1! ^ Mm2

~ k̂2! ei (k1•x1k2•x8)

3^ mm1
~k1!mm2

~k2!&, ~12!

where
5-2
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^ mm1
~k1!mm2

~k2! &5Z21E Dmmm1
~k1!mm2

~k2!

3exp~2H/T !. ~13!

L is the dimensionless cutoff and Dm
5) m,k

k,L
@Av/2pdmm(k)#. The moduli of all wave vectors en

tering sums in the Eq.~10! do not exceedL.

III. GENERAL ANALYSIS OF THE REAL-SPACE
TWO-POINT CORRELATION FUNCTIONS

IN THE ISOTROPIC PHASE

In this section, we define correlation functions that we
going to calculate for chiral isotropic liquids. We restrict ou
selves to the most important and the simplest of correla
functions, namely, to the two-point correlation functio
G(x,x8). It describes processes taking place in isotropic
well as in anisotropic liquids that are related to fluctuatio
in the alignment tensor. Leading terms of the light scatter
amplitude as well as of the optical activity of chiral liqu
crystals serve here as examples. Moreover, invariant ten
extracted fromG can be used to define phase chirality, whe
the latter issue is being widely discussed recently in the
erature@6,10,11#. Knowing real-space properties ofG(x,x8)
would allow for comparison~and perhaps for finding a
bridge! between computer simulations on model chiral liqu
crystals ~e.g., simulations of Memmer@11#! and the phe-
nomenological theory. Below, we shall give an explicit fo
mula for this correlation function in the isotropic liquid, i
terms of its fourier modes, and show that these can
expressed as an integral overk involving products of five
elementary correlation functions^umm(k)u2& with terms such
as cn5cos(kur2r8u)/(kur2r8u)n and sn5sin(kur2r8u)/
(kur2r8u)n.

For an isotropic fluid,G is invariant with respect to a
global translation and a rotation aboutx2x8. These symme-
try requirements reduce Eq.~12! to a simpler one, which
reads

G~x,x8!5G~x2x8!

5
v

~2p!2 (
m

E
0

L

k2Gm~k!Mm~kux2x8u,ẑ!dk

~14!

with

Gm~k!5^ umm~k!u2& ~15!

and

Mm~kux2x8u,ẑ!5
1

4pE d2k̂@Mm~ k̂! ^ Mm* ~ k̂!#eikux2x8uk̂• ẑ,

~16!

where ẑ5(x2x8)/ux2x8u. While general formula~14! de-
pends on details of the five elementary correlationsGm(k),
the angular integrals~16! can be carried out explicitly. An
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average over the unit sphere of the fourth-rank ten

@Mm( k̂) ^ Mm* ( k̂)# with a function depending onk̂• ẑ yields a
uniaxial tensor. This, in turn, is decomposed with respect
basis of fourth-rank uniaxial tensors

~17!

Here $x̂,ŷ,ẑ5(x2x8)/ux2x8u% is the local, orthonormal tri-
pod of vectors and

are Clebsch-Gordan coefficients. There are five such tens
corresponding toL50,1,2,3,4, which we present in the Ap
pendix@Eqs.~A1!–~A5!#. Under rotations, these transform a
spherical harmonicsY0

(L) , and these are orthonormal:

M0
(L)* •M0

(L8)[ (
abgd

~M0
(L)!abgd* ~M0

(L8)!abgd5dLL8 .

~18!

The integration in Eq.~16! is performed using the quaternio
parametrization of the tripod$ĵ,ĥ,k̂%. Alternatively, one can
perform a Legendre polynomial expansion of the exponen
function in Eq.~16! and carry out integration by parts. Wit
both methods, the final result for the real-space correla
function ~14! reads

G~x2x8!5
v

~2p!2 (
L50

4

G(L)~ ux2x8u!M0
(L)~ ẑ!, ~19!

where

G(0)5
1

A5
KK S (

m522

2

GmD u0LL , ~20!

G(1)5 i GR
(1)5

i

A10
^̂ ~2 G2222 G21G212G1! u1&&,

~21!

G(2)5
1

A14
^̂ ~2 G2212 G222 G02G12G21! u2&&,

~22!

G(3)5 i GR
(3)5

i

A10
^̂ ~G222G212 G122 G21! u3&&,

~23!

G(4)5
1

A70
^̂ ~G221G216 G024 G124 G21!u4&&,

~24!

with
5-3
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u05s1 , u152 iP1S i
]

]~kr ! D s15c12s2 ,

u25P2S i
]

]~kr ! D s153c21s123 s3 , ~25!

u352 iP3S i
]

]~kr ! D s15c1215c326 s2115s4 , ~26!

u45P4S i
]

]~kr ! D s1510c22105c41s1245s31105s5 ,

~27!

^̂ Gm un&&5E
0

L

k2Gm~k! un~kux2x8u!d k. ~28!

PLs are Legendre polynomials. Note that, in reciprocal
well as in real space there are only five different correlat
functions~modes!. In reciprocal space, these are theGm(k)
functions while their counterparts in the real space areG(L),
Eqs.~20!–~24!,

G(L)5
~2p!2

v
G~x2x8!•M0

(L)* . ~29!

The correlation functions in real space provide an eleg
classification of the modes, which are read off from the f
mulas~21!–~24!. In particular, we find that the modesG(1)

and G(3) associated with the axial tensorsM0
(1) and M0

(3) ,
respectively, existonly for chiral systems, and disappear f
racemic mixtures. These show that chirality locally induc
polar correlations (G(1)), even in the absence of the dipo
moments. As follows from numerical analysis presented
the following section, the leading correlations in the isot
pic, chiral liquid are given byG(0), G(2), and G(1), while
G(3) and G(4) are less important. In the limit ofx8→x and
for fixed L, all correlations vanish exceptG(0), which is
given by

G(0)~0!5
1

A5
KK S (

m522

2

GmD LL 5
~2p!2

v s2A5
^Tr@Q~x!2#&.

~30!

Although correlation functions~20!–~24! are easily acces
sible, e.g., in computer simulations, we are not aware of
systematic studies of their properties for chiral liquids.
particular, irreducible partsGR

(1) andGR
(3) being proportional

to chirality k could be used to introduce a measure of ph
chirality.

IV. MODEL CALCULATIONS

We closely follow the theory exposed in our previo
publications @1,2#. However, because the order parame
components are coupled in the isotropic–BPIII pretran
tional region, we include all five helicity modes into the th
oretical scheme and carry out the analysis to leading orde
the cumulant expansion. The importance of the mode-m
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coupling will clearly be demonstrated. We start by noti
that the free energy~4! has an upper bound given by th
Bogoliubov-Hellman-Feynman inequality@12#

F<Ftrial 5F01^H2H0&0 , ~31!

where F0 is calculated from Eq.~4! with the trial Hamil-
tonianH0 as well as the averagêH2H0&0. One can prove
the inequality~31! with the cumulant expansion up to secon
order. The inequality becomes an equality forH05H. It is
important to note that the choice of the trial HamiltonianH0
is determined by the possibility of evaluating the path in
gral ~11! exactly. Any adjustable parameters introduced
H0 are best chosen so as to minimize the right-hand s
~RHS! of the inequality~31!. In order to carry out perturba
tional calculations, we choose an effective quadratic Ham
tonian depending on five variational parametersDm :

H0 /v5
1

4 (
m,k

$Dm1@ f ~m,k!#2%umm~k!u2, ~32!

where the chosen form resembles the structure of the q
dratic part ofH, Eq. ~10!,

H2 /v5
1

4 (
m,k

$tm1@ f ~m,k!#2%umm~k!u2. ~33!

Here,

f ~m,k!5S km

2Arm

2kArmD ~34!

and

tm5t2
k2m2

4rm
, rm511

1

6
r~42m2!. ~35!

Equation~32! is a direct generalization of Eq.~10! in Ref.
@2#. With the trial Hamiltonian~32!, the calculation of the
RHS of Eq.~31! is carried out in a similar fashion as in Ref
@1,2#. One finds

2T21F05 ln Z05 (
m,k

k,L

1

2
ln

2T
Dm1@ f ~m,k!#2

~36!

and

^H2H0&05(
m H tm2Dm1

14

15 (
m8

Sm8~Dm8!J Sm~Dm!,

~37!

where

Sm~Dm!5
1

4 (
k

^umm~k!u2&H0
5

T
4p2E0

L k2dk

Dm1@ f ~m,k!#2
.

~38!

Therefore, we can improve the previous approach@2# by
minimizing the ~dimensionless! trial free energy Ftrial
5-4
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52T ln Z01^H2H0&0 with respect to the five variational pa
rametersDm for fixed relative temperaturet, energy scale of
the fluctuationsT, relative elastic constantr, and cutoffL
5nk with n varying from 1 to 4@2#. The Dm

21/2 parameters
are the correlation lengths andSm(Dm) is the self-energy
function associated with the modem. As already mentioned
before, the cutoff parameterL has to be introduced to elimi
nate modes that are not described by the mesoscopic Ha
tonian. But, as we will show, in a reasonable range for
cutoff radius, the calculations yield qualitatively similar r
sults and quantities, such asG(1),G(3) or the optical activity,
are practically independent of the cutoff forL*3. The di-
mensionless absolute temperatureT is close to the clearing
point temperature, but we find it more convenient to int
duce the parametera5T /(60p2) used in previous publica
tions@1,2#. A thorough discussion of all parameters exceptr,
which is not present form52 mode, is found in Ref.@2#. As
concerningr, it is estimated with the help of the resul
given in Ref.@13#. By employing the transformation from th
tensorial to the director picture, we find thatr56k11/(3k22
2k111k33), where kii are the Oseen-Zoher-Frank elas
constants. Choosing typical values forkii in the nematic
phase@14#, we obtainr'2.8. On the other hand, close to th
nematic-isotropic phase transition, these can all be ta
equal yieldingr'2. Estimates of Stinson and Litster sho
that r'1 for MBBA @15#. Our analysis will be carried ou
for r between 0 and 3. We show that the parameterr is of
secondary importance for the isotropic liquid.

In order to obtain the equilibrium free energy, and hen
also the thermodynamic functions of interest, the trial fr
energy has to be minimized with respect to the variatio
parametersDm . It leads to nonlinear equations

F tp2Dp1
28

15 (
m

Sm~Dm!G ]Sp

]Dp
50. ~39!

Differentiating Eq.~38! with respect toDp , one finds that
]Sp /]Dp,0 implying that Eq.~39! becomes reduced to a s
of five self-consistent equations:

Dp5tp1
28

15 (
m

Sm~Dm!. ~40!

By substituting Dp5D1tp , these are simplified to on
equation as

D5
28

15 (
m

Sm~D1tm!.0. ~41!

Such a simple reduction exists only in the lowest-order
mulant expansion. We find thatDm5D2m . Additionally,
within the stability limit of the Hamiltonian~1!, the domi-
nant correlation length corresponds to them562 modes.
The smallest correlation length is associated with the m
m50. Also note that in the absence of fourth-rank terms
the Hamiltonian the theory reduces to standard Gaussian
relations withDm5tm .

A numerical analysis of the model requires stability of t
Gaussian trial Hamiltonian~32!. This is guaranteed given
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il-
e

-

n

e
e
l

-

e
n
or-

that solutions forDm satisfyDm.0 (m522, . . . ,2).Under
these circumstances, the liquid state is at least a metas
one. We cannot prove, however, that the isotropic liquid
absolutely stable for all cases withDm.0. Most probably,
there exists a region in the parameter space where the
lesteric phase or cubic blue phases take over, but inclusio
all these phases into the perturbational scheme introdu
here is quite difficult and has not been done as yet.

Typical numerical solutions forD are shown in Fig. 1.
These look qualitatively similar to those obtained in Ref.@2#.
However, a closer inspection of the figure in the vicinity
t2'0 shows the differences. This is best illustrated in Fig.
whereD2 calculated with five modes is compared with th
case where only them52 mode was retained@2#. We note
that both theories give similar results at high temperatu
and/or high chiralities. However, these differ significantly f
t2'0, where a qualitative change of the correlations ta
place. We find that the extra modes couple with each ot

FIG. 1. Dependence of the variational parameterD25D1t2 on
the relative temperaturet2 for a50.2, n51, r50, and fork vary-
ing between 0.25 and 2.0. Curves are parametrized by chiralityk.

FIG. 2. Temperature variation ofD2 /D, whereD is taken from
Ref. @2#. Calculations are carried out fora50.2, n51, r50, and
for k varying from 0.25 to 2. The curves are parametrized
chirality k.
5-5
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thus enhancing correlations in this regime, which is in li
with experiments in the vicinity of BPIII–isotropic phas
transition~see, e.g., Ref.@7#!. A similar behavior is observed
close to the isotropic-cholesteric phase transition as will
discussed in our forthcoming publication@16#. Also please
note that the relative elastic constantr is of secondary im-
portance for the properties of high-temperature phaset2
.0), as illustrated in Fig. 3.

Finally, we comment on the possibility of a phase tran
tion between BPIII and the high-temperature isotropic liqu
Unfortunately, such a phase transition is not realized in
lowest-order cumulant expansion calculations. This is rec
nized on the relationship betweentp andD l :

]tp

]D l
5dpl2

28

15

]Sl~D l !

]D l
.0, ~42!

which means that a critical point (]tp /]D l50) and a first-
order phase transition (]tp /]D l,0) are not present in ou
theory. It would require to take into account higher orders
the cumulant expansion as demonstrated in Ref.@2#. How-
ever, as we show, by studying the correlation functions,
specific heat, and the pretransitional optical activity, the
istence of the two differently correlated regions in the th
modynamic space is evident even in this order of calcu
tions. The results are presented on two plots for each c
One for cutoff parametern51 and the other forn53. The
different lines on each plots correspond to different values
the chirality changing fromk50.2 tok53, but many quan-
tities of interest are practically cutoff independent fork
*3.

After introducing the perturbational scheme, we use it
discuss the correlation functionsG(L), the optical activity
tensor, and the specific heat. Also, we calculate the avera
value of the chiral invariant in Eq.~2!, previously used to
discuss ordering in chiral isotropic liquids@8,19#.

A. Correlation functions

We assume that the correlation functionsGm are
Lorentzian-like with

FIG. 3. Temperature variation ofD(r)/D(r50). Calculations
are carried out fora50.2, n51, and fork50.5,2 ~inset!.
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Gm5
gm

jm
221~k2km!2

, ~43!

wheregm5g2m andkm52k2m . The model calculations o
the preceding section, Eqs.~31!–~41!, are special cases o
Eq. ~43! with

jm
225

Dm

rm
, rm511

1

6
r~42m2!, gm5

2T
rm

, km5
km

2rm
.

~44!

Also, the ordinary Gaussian theory is recovered from E
~43! if we takeDm5tm .

Substitution of Eq.~43! into Eqs. ~20!–~24! yields the
formulas for the correlation modesG(L), L50, . . . 4,which
are linear combinations ofm-~anti! symmetrized average
Gm,n

6 :

Gm,n
6 5E

0

Lm
q2F 1

11~q2qm!2
6

1

11~q1qm!2G un~q xm!dq

5
jm

gm
^̂ ~Gm6G2m! un&&, m>0. ~45!

Here, the model parameters are measured relative to th
mensionless correlation lengthjm : xm5ux2x8u/jm , qm

5kmjm , Lm5Ljm . The functionsGm,n
6 could be expressed

in terms of sine~Si! and cosine~Ci! integral functions but, as
the formulas are lengthy, we do not present them explic
here. Instead, a typical behavior ofGm,n

6 on the relative, re-
duced distancexm is shown in Figs. 4–7.

We observe that the real space behavior ofGm,n
6 splits into

three classes represented by~a! Gm,0
1 , ~b! Gm,2

1 , Gm,4
1 , and

~c! Gm,1
2 , Gm,3

2 (mÞ0) functions. A major difference be
tween them is their cutoff dependence, which can be stud
by analyzing the limitLm→`. More specifically, it is found
that only the functions belonging to the classes~a! and ~b!

FIG. 4. Dependence of correlation modeGm,0
1 multiplied by the

relative reduced distancexm on xm . Curves are parametrized b
Lm51,3,̀ and qm51. The inset showsGm,0

1 for qm50,2,4 and
Lm53. Thicker lines correspond to larger values of the paramet
The limiting curve,Lm5`, qm51, is shown as dashed line.
5-6



r-

a
e

-

ce
st

n

ro

f

t

the

or-
em-
hose

es
om

on-

er-

er of

CORRELATIONS IN THE ISOTROPIC PHASES OF . . . PHYSICAL REVIEW E 67, 061705 ~2003!
show, for smallxm , strong dependence on the cutoff. In pa
ticular, Gm,0

1 @see Fig.~4!# diverges linearly withLm as xm

tends to zero:

lim
Lm→`

Gm,0
1 5

p e2xm@cos~qm xm!1qm sin~qm xm!#

xm
.

~46!

All remaining functions of classes~b! and ~c! disappear by
symmetry whenxm tends to 0 andLm is finite. As high
momenta are important for small values ofxm , we expect
that overall cutoff dependence of the functions~b! and ~c!
should be of secondary importance. Indeed, this is the c
for the class~c!, Figs. 5 and 7, where contributions of th
high energy modes~largek vectors! partly cancel out due to
Gm2G2m dependence under the integral~45!. But, as the
limits xm→0 andLm→` do not commute, a cutoff depen
dence could also be observed for a smallxm . To be more
specific, let us concentrate on the parameter dependen
Gm,1

2 function in a more detailed way. We find that the fir
peak ofGm,1

2 , being located atxm* '4.49/Lm (Lm*3), re-
sults from a combination of chiral interactions and high e
ergy modes. Forxm.xm* , the functionsGm,1

2 could be re-
placed by theirLm→` counterparts and these fall off to ze
for xm→0 (xm,xm* ). WhenLm→`, we find

lim
Lm→`

Gm,1
2

52
p e2xm@~11 xm!sin~xm qm!2xm qm cos~ xm qm!#

xm
2

,

~47!

where the peak atxm* for finite L yields a nonzero value o
Gm,1

2 at xm50 for the limiting case~47!. A similar behavior
is observed forGm,3

2 , as shown in Fig. 7. Note again tha

FIG. 5. Dependence of correlation mode2Gm,1
2 on the relative

reduced distancexm . The curves are parametrized byLm

51,3,10,̀ andqm51. The inset shows2Gm,1
2 for qm50.5,2,4 and

Lm53. Thicker lines correspond to larger values of the paramet
The limiting curve,Lm5`, qm51, is shown as dashed line.
06170
se

of

-

both Gm,1
2 andGm,3

2 vanish with vanishing chirality, with the
leading term being proportional toqm .

FunctionsGm,2
1 andGm,4

1 look similar toGm,0
1 except that

these vanish forxm50 and finiteLm . A first peak ofGm,2
1

andGm,4
1 , being located atxm* ;1/Lm , is due to high-energy

modes and diverges linearly withLm . Again the limiting
cases could easily be found. For example,

lim
Lm→`

Gm,2
1

5
p$231e2xm@31~11qm

2 !xm~31xm!#cos~qm xm!%

~11qm
2 !xm

3

2
pe2xmqm@32~11qm

2 !xm
2 #sin~qm xm!

~11qm
2 !xm

3
. ~48!

Note that the formulas derived here are independent of
details of a model used to calculateDm .

Now, by taking appropriate linear combinations ofGm,n
6

functions @see, Eqs.~20!–~24! and ~45!#, the properties of
G(L)s could easily be studied for the model~31! and~32!. In
particular, we find that the temperature dependence ofG(L)s
provides a clear distinction between the two differently c
related regions in the thermodynamic space as at low t
peratures the correlation modes are much stronger than t
at high temperatures. The purely chiral functionsGR

(1) and
GR

(3) are found weakly dependent on the cutoff for distanc
above the first peak. The dominant contributions come fr
fluctuations on the sphere ofk vectors, wheref (m,k)2, Eq.
~34!, is minimal, that is, fork'k. These fluctuations are
induced by the presence of chiral interactions and their c
tribution, measured byGR

(1) and GR
(3) , disappears for non-

chiral systems. In this sense,GR
(1) ~or functions involving

GR
(1)) could serve as a measure of phase chirality. Furth

s.

FIG. 6. Dependence of correlation mode2xm Gm,2
1 on the rela-

tive reduced distancexm . Curves are parametrized byLm

51,3,10,̀ and qm51. The inset shows2xm Gm,2
1 for qm

50.5,2,4 andLm53. Thicker lines correspond to larger values
the parameters. The limiting curve,Lm5`, qm51, is shown as
dashed line.
5-7
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more, the position of the first peak could be used to spe
the distance above which chirality-induced modes domin

Finally, we note that the effect of the parameterr (r
.0) on the correlations is to introduce weights for line
combinations ofGm,n

6 enteringG(L) and to rescale correla
tion lengths. As this rescaling goes throughrm , the effect is

weak for experimentally accessible values of this parame
The only qualitatively different case is that ofr50 (rm
51). For r50, the contribution toG2 and G4 of high-
energy modes largely cancels out due to subtractions of
ferentGm,n

1 functions@see Eqs.~22! and ~24!#.

B. Pretransitional optical activity

The explicit form of the pair correlation function~either
in Fourier or in real space! is a different step towards calcu
lations of experimentally accessible quantities, such as in
sity of scattered light or optical activity. We concentrate he
on the optical activity in the isotropic phase.

The optical-activity tensor of an isotropic fluid,g i jk
5e i jkg, measures, according to Landau@17#, the depen-
dence of the dielectric tensor on the variation of the lo
electric field. The corresponding expressions for choleste
and blue phases have been discussed by Bensimonet al.
@18#. They calculated the leading term tog i jk assuming that
the maximal correlation length ofG is negligible compared
to the wavelength of the incident light. Their formula h
subsequently been generalized by Lubensky and Stark@8# to
the case when the isotropic fluid is close in temperature
the cholesteric or blue phase. Following the derivation giv
in Refs.@18,8# one finds that

g5
s2eadm

12pe0jR
2E d3xGabgd~x!xm~]b]g2q2dbg!Fe2 iq•x

x G
5

s2

p2e0jR
2 ~g01g2k0

21••• !, ~49!

FIG. 7. Dependence of correlation modeGm,3
2 on relative re-

duced distancexm . Curves are parametrized byLm51,3,10,̀ and
qm51. The inset showsGm,3

2 for qm50.5,2,4 andLm53. Thicker
lines correspond to larger values of the parameters. The limi
curve,Lm5`, qm51, is shown as dashed line.
06170
fy
e.

r

r.

if-

n-
e

l
cs

to
n

g05
1

12
E

0

L

dqq@G1~q!2G21~q!# →
L→` Tkp

12S 11
1

2
r D 5/4

AD1

,

~50!

g252
1

18
E

0

L

dq
1

q
@G1~q!2G21~q!#2

2

9
E

0

L

dq
1

q

3@G2~q!2G22~q!#

→
L→`

2
2Tkp

9 F 2

AD2~D21k2!

1

11
1

2
r

S 11
1

2
r D 1/4

AD1F4S 11
1

2
r D 1/2

D11k2GG .

~51!

Here,e0 is the average dielectric constant of the system a
k is the wave vector of the incident light in units ofjR

21 .
Note that in Eq.~49! not only modes withm561 are
present but also those withm562, in agreement with ex-
periments by Battleet. al. @4# and Enniset al. @3#. The angle
of rotation of the light is given byf5(k0

2/2)g. Also, please
observer dependence ofg.

Does the optical activity change sign, as observed exp
mentally? The optical activity depends on the product
chirality and correlation length. For relatively low chiralitie
there are long-range correlations in the BPIII phase. Beca
small changes ink cause a big difference ofD, g'j is

g FIG. 8. Dependence of optical activity coefficientsg0 andg2 on
temperaturet2. The solid line corresponds tog0, whereas the
dashed line describes2g2. Parameters used area50.2, r51, k
50.25, andn51.
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valid. This picture turns over where chiralities are lar
enough. In this situation,g'k. Additionally, due to second
order term in Eq.~49!, optical activity can change sign fo
large enough value ofk0. A model calculation of the first two
terms of total optical activity is shown in Fig. 8.

C. Order parameter Š*d3r e i jk Qil ­ jQkl‹

Another quantity, which could give a clear distinction b
tween the isotropic phases of chiral liquid crystals is
~dimensionless! order parameterc5jR /s2^(“3Q)•Q& in-
troduced in Refs.@19,8#. Its definition shows that it measure
local twisting power

c5(
k,m

m kGm~k!

54pkTH F 161
4

S 11
1

2
r D 2GL

12pS 26AD21
2k2

AD2
D 1

p

S 11
1

2
r D 3

3F 23S 11
1

2
r D 1/4

AD11
k2

4S 11
1

2
r D 1/4

AD1
G

1O8S 1

L D J . ~52!

Dependence ofc on the temperaturet2 is shown in Fig. 9.
Note that c behaves in a similar way as the correlati
length. More specifically, there are two regimes charac
ized by small and large values of this parameter, but,

FIG. 9. Dependence of order parameterc on temperaturet2.
Due to a negative value ofc, the plot shows its absolute valuet2.
Parameters used area50.2, r51, andn51. Chirality k varies
from 0.25 to 2.
06170
e

r-
s

already discussed before, no phase transition between
regimes is predicted by the theory. Note that the term p
portional toL does not depend ont2.

D. Specific heat

The relatively simple form of the effective Hamiltonia
H8 allows us to calculate practically all experimentally a
cessible quantities. We illustrate this further by calculati
the specific heat of the chiral isotropic liquid. For our case
reads

C52T ]2~F/v !

]T 2
'T (

m

]Dm

]t

]Sm

]Dm
, ~53!

and does not show a singularity. However, there exist
clear maximum in the specific heat fort2'0 and at moder-
ate chiralities, Fig. 10, supporting previous observations t
the structure of short-range correlations changes in this
gime. The effect almost disappears fork.1. Though the
model does not display a singularity or a discontinuity ch
acteristic of a phase transition, the behavior is typical o
pretransitional regime where enhance of correlations is
dicative of a nearby critical point. Such a critical point ca
be accounted for by the third-order cumulant expansion
shown with the help of calculations with a scalar order p
rameter@1,2#.

V. SUMMARY

We have presented a systematic approach to study
effect of correlations between the fluctuating helicity mod
of the alignment tensor in the isotropic phases of chiral l
uid crystals. One of the main advantages of the present
proach is that it treats the fluctuations of the various mo
on an equal footing and thus it allows one to compare th
relative importance. The only other calculations in this dire
tion we are aware of are those for nematic liquid crystals
Priest and Lubensky@20# and by Wang and Keyes@21#. More
recently, some aspects of tensor fluctuations were also

FIG. 10. Dependence of specific heat on temperaturet2 for a
50.2, r51, k50.25, and forn51.
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sidered for spontaneously ordered chiral phases, releva
bent-core liquid crystals@22#.

Here, the exact representation of the real-space two-p
correlation function has been derived to show that the i
ducible partsGR

(1) andGR
(3) of G can be used to characteriz

phase chirality of an isotropic liquid. These quantities, es
cially GR

(1) , seem more adequate for that than, e.g., opt
activity. The reason is that the leading term of the opti
activity depends upon secondarym561 modes, while the
most important for chiral liquids arem562 modes. Terms
that enterGR

(1) contribute to the intensity of light scattered
wave vectorq and could, at least, in principle, be extract
by incorporating appropriate polarization vectors for the
cident and the scattered lights. Also please note that non
values ofGR

(1) andGR
(3) indicate that chirality induces loca

polar ordering even in the absence of dipole moments. B
functions vanish for nonchiral and nonpolar liquids a
could easily be determined, e.g., from computer simulati
on molecular models. Although this has not been done so
such simulations would be of interest as these could prov
a connection between microscopic modeling and phen
enological approach.

The theory has been illustrated with calculations that
complete up to the first-order cumulant expansion. The
culated quantities such as the correlation lengths and the
relation functions of the tensor order parameter, the opt
activity, the chiral order parameterc, and the specific hea
show two distinct isotropic regimes. The first one is high
correlated and appears at low chirality and/or tempera
and differs from a weakly correlated one that is stable att2
.0. Furthermore, we proved that themÞ2 modes are of
secondary importance except close tot2'0, where the two-
point correlations change their character. In this regim
which could be considered as a sign of a pretransitio
BPIII–isotropic regime, the correlations between the com
nents of the tensor order parameter are important, in ag
ment with experiment. However, the lowest-order cumul
06170
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expansion cannot account for a ‘‘sharp’’ phase transition
tween the high-temperature isotropic liquid and the BP
even with all five modes included. Thus going beyond t
leading order seems essential.

Indeed, as we showed in our previous publications@1,2#,
the third-order cumulant expansion with a simplified Gau
ian trial Hamiltonian allows one to recover a true phase tr
sition between the isotropic phases within the Landa
Ginzburg–de Gennes Hamiltonian. Though, as we belie
such calculations with the exact Hamiltonian are relevan
obtain a fully consistent picture of the chiral isotrop
phases, many of the results presented here are expect
remain unaffected. One of them is the detailed analysis of
correlations as given in Secs. II, III, and IV c and presen
in Figs. 4–7. Clearly, these are independent of detailed m
els used to calculateDm . The model should also be correct
least in the high-temperature isotropic regime where it
comes convergent to the previously studied, simplified c
@1,2#. Finally, the improved calculations cannot remove c
relations predicted by the first-order analysis and the t
phase transition of such an improved analysis would be
pected fort2'0 ~see, Figs. 1,2 and 10!. This expectation is
supported by Fig. 5 of Ref.@1# and Fig. 11 of Ref.@2#, where
the phase transition of the simplified model is also obser
for t2'0.

One of the new features of higher-order calculations co
be a momentum dependence ofDm parameters, which would
replace nonlinear equations~40! by integral equations. Ex-
periments by Koistinen and Keyes@7# seem to indicate tha
Gm may indeed be more complicated function than a sim
Lorentzian.
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APPENDIX: UNIAXIAL BASIS TENSORS

We list below:

M0
(0)5

1

6A5
$6 ~ x̂^ x̂^ x̂^ x̂1 ŷ^ ŷ^ ŷ^ ŷ1 ẑ^ ẑ^ ẑ^ ẑ!22 ~ x̂^ x̂1 ŷ^ ŷ1 ẑ^ ẑ! ^ ~ x̂^ x̂1 ŷ^ ŷ1 ẑ^ ẑ!

13@~ x̂^ ŷ1 ŷ^ x̂! ^ ~ x̂^ ŷ1 ŷ^ x̂!1~ x̂^ ẑ1 ẑ^ x̂! ^ ~ x̂^ ẑ1 ẑ^ x̂!1~ ŷ^ ẑ1 ẑ^ ŷ! ^ ~ ŷ^ ẑ1 ẑ^ ŷ!#%, ~A1!

M0
(1)5

2 i

2A10
@2~ x̂^ x̂2 ŷ^ ŷ! ^ ~ x̂^ ŷ1 ŷ^ x̂!22~ x̂^ ŷ1 ŷ^ x̂! ^ ~ x̂^ x̂2 ŷ^ ŷ!1~ x̂^ ẑ1 ẑ^ x̂! ^ ~ ŷ^ ẑ1 ẑ^ ŷ!

2~ ŷ^ ẑ1 ẑ^ ŷ! ^ ~ x̂^ ẑ1 ẑ^ x̂!#, ~A2!

M0
(2)5

1

6A14
@4x̂^ x̂^ ~ x̂^ x̂22ŷ^ ŷ1 ẑ^ ẑ!14ẑ^ ẑ^ ~ x̂^ x̂1 ŷ^ ŷ22 ẑ^ ẑ!14ŷ^ ŷ^ ~ ŷ^ ŷ22 x̂^ x̂1 ẑ^ ẑ!

16~ x̂^ ŷ1 ŷ^ x̂! ^ ~ x̂^ ŷ1 ŷ^ x̂!23~ x̂^ ẑ1 ẑ^ x̂! ^ ~ x̂^ ẑ1 ẑ^ x̂!23 ~ ŷ^ ẑ1 ẑ^ ŷ! ^ ~ ŷ^ ẑ1 ẑ^ ŷ!#, ~A3!
5-10
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M0
(3)5

2 i

2A10
@~ x̂^ x̂2 ŷ^ ŷ! ^ ~ x̂^ ŷ1 ŷ^ x̂!2~ x̂^ ŷ1 ŷ^ x̂! ^ ~ x̂^ x̂2 ŷ^ ŷ!12~ ŷ^ ẑ1 ẑ^ ŷ! ^ ~ x̂^ ẑ1 ẑ^ x̂!

22~ x̂^ ẑ1 ẑ^ x̂! ^ ~ ŷ^ ẑ1 ẑ^ ŷ!#, ~A4!

M0
(4)5

1

2A70
@~ x̂^ x̂1 ŷ^ ŷ24ẑ^ ẑ! ^ ~ x̂^ x̂1 ŷ^ ŷ24ẑ^ ẑ!12x̂^ x̂^ x̂^ x̂12ŷ^ ŷ^ ŷ^ ŷ28ẑ^ ẑ^ ẑ^ ẑ

1~ x̂^ ŷ1 ŷ^ x̂! ^ ~ x̂^ ŷ1 ŷ^ x̂!24~ x̂^ ẑ1 ẑ^ x̂! ^ ~ x̂^ ẑ1 ẑ^ x̂!24~ ŷ^ ẑ1 ẑ^ ŷ! ^ ~ ŷ^ ẑ1 ẑ^ ŷ!#. ~A5!
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