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Correlations in the isotropic phases of chiral liquid crystals: The role of helicity modes
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The phenomenological theory of chiral liquid crystals is further developed by generalizing the model of
self-consistent correlatiorid. Englert, L. Longa, H. Stark, and H.-R. Trebin, Phys. Rev. |84t1457(1998)].
In the present approach, not only a leading helicity mode of the tensor order parameter is retained but also the
remaining four modes. By considering a full fluctuating spectrum of the order parameter, the role of correla-
tions between helicity modes in the isotropic phases is studied. Additionally, an exact form of the two-point
correlation function in real space is derived and its properties are thoroughly discussed. It is shown that for
chiral isotropic liquids purely chiral modes could be identified that do not exist for an ordinary liquid. Detailed
results of the numerical calculations are compared with those obtained from the earlier model and these show
regions where the coupling between the modes becomes important, in agreement with the available experi-
mental data. Though the analysis up to first-order cumulant expansion does not predict a direct phase transition
between the blue phase Il and the isotropic phase, it is fairly easy to identify two differently correlated regions
in a temperature-chirality plane. Various structural quantities, such as optical activity and specific heat, also
reveal a behavior characteristic of two isotropic phases with different correlation lengths.
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[. INTRODUCTION play the role of the inverse square roots of the correlation
lengths for the alignment tensor field. Using a cumulant ex-

In our previous publicationgl,2], we have demonstrated pansion and variational calculus, we explicitly show that the
that correlations between orientational degrees of freedorfive modes are not only visible in the pretransitional region
are crucial for a proper understanding of phase diagram$ut also are strongly coupled. Our cumulant expansion is
involving isotropic, cholesteric, and cubic blue phases. Inimited to leading order as previously. A third-order expan-
particular, we showed that it is possible to construct a syssion with the exact Hamiltonian is still extremely compli-
tematic perturbational scheme to account for the complexitgated and demanding and is reserved for future work. In the
of the phase diagram for blue phases. In the previous analyast section, we apply the theory to calculate observables
sis, however, we neglected the coupling between the modesich as the rotatory power.
of the tensor order parameter. Only the leading order calcu-
lations, including than=2 helicity mode of the tensor order
parameter, have been carried out.

On the other hand, experiments show that other helicity
modes and coupling between them may become importantin An average orientational order in liquid crystals is best
the pretransitional regimg8—7]. For example, light scatter- quantified in terms of the symmetric and traceless alignment
ing in the isotropic phase gives a possibility to observe alkensor fieldQ(r). The Landau—Ginzburg—de Gennes Hamil-
five helicity modes. There are also correlations between thepnian, also known as free energy functional of chiral liquid
modes as probed, e.g., by optical activity experiments.  crystals, follows then from a series expansioQir) and its

In the present approach, we systematically inclatiéive  derivatives. In real space, it reafB
helicity modesnto a field theoretical treatment of the isotro-
pic phases with Landau—de Gennes Hamiltonian. We also
study the coupling between the modes and show explicitly
the existence of this coupling in the pretransitional regime, at
theoretical level. In addition, our analysis also provides ayhere
simple measure of chirality in the isotropic phase, in terms of
invariant tensors extracted from real-space correlation func- 1
tions. A semiphenomenological approach to this problem, _=| 43 2 A A
valid in the vicinity of the isotropic—blue phase BP III) Hz ZJVd AT+ C1Quy Qi+ €2Quyi Q.
phase transition, has been proposed in the literd®ice

This paper is organized as follows. After a brief discus- —2de€j1 QinQin i1, 2
sion of the statistical field theory, we derive an exact repre-
sentation of pair correlations in the isotropic phase and dis-

IIl. THEORY OF ORIENTATIONAL ORDER IN
CHOLESTERIC LIQUID CRYSTALS

H:H2+H3+H4, (1)

cuss a possible relation to phase chirality. Then, we describe Hy=— iJ' d3rTr(Q?) H“:lf B[ Tr(Q?) ]2
a general perturbation scheme based on an effective Hamil- J24)v ’ 4)v
tonian, which depends on five variational parameters. These 3
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The stability of the expansiofil) requires thatc,>— 3¢, modes. In a right-handed local system of orthonormal unit
and y>0. Additionally, as usual in Landau theory, the pa- vectors{ ,k=k/k}, the basis matrices read
rametera is the temperature distance from the spinodal,
=ag(T—T*) with a;>0.
The impact of the fluctuations of orientational degrees of R 1 ..
freedom can now be analyzed with the formalism of statisti- Mo(k)= —=(3k®k—1),
cal field theory. For example, the free energy and the ordi- V6
nary two-point correlation function are given by

~ 1
My(k)=—=

F=—kgTInZ, Z=J’DQexq—H/kBT), (4) ﬁ(u®k+k®u)=['\ﬂ-1(k)] :

M(k)=u@u,=[M_,(k)]*, @)

Gaapya1i1)=(Qup(NQyalr")) whereu=1/\2(¢+i7), k=|Kk, and
~27 [ DQQNQ, e~ HikeT),
©) Min(K)- M7, () =T Mu(KM7 (K)]= Oy - (8)

where the symboJDQ denotes the integral over the tensor In the reciprocal space and in the dimensionless variables of
field Q. Note thatG,,,s(r,r") is a component of the fourth- Grebelet al. [9],
rank 3Xx3x3x 3 tensorG={(Q(r)@Q(r’)).

Practical calculations involving Eq$4) and (5) are car-
ried out in the momentum representation as it diagonalizes _
H,. It amounts to expandin@(r) into a Fourier series and Hm(K)=Qm(K)/s,
spin tensor modes of momentum=2, and yields

x=rlég, k=kér, v=VI&,

H=vys*H,

3
s=pBI\6y, k=¢gdicy, p=cyle;>~ 2, T=kgTys?,

2
AN=2 X QukIMy(ke*". )
k m=-2 t=2alys’=ay(7T— 1)/ Ty, ao>0, &r=+2c,/ys%,

The basis matriceMm(R) are defined separately for each 9)
wave vector directiork and m labels the different helicity the Hamiltonian(1) becomed1,2]

[E=Y

H/U:ZEk > {t—ka+

m

1 1 N - N
1+5p<4—m2)}k2]|Mm<k>|2—5k2 2 T My, (k)M (ko) My (ks)]

1,K k3 mq,my,mg

> T My (k)M (k) ITH My (K3) M, (K)]

X k k k) 8 + 5
,U«ml( 1)Mm2( z)Mms( 3) ki +kptkg, 0 5 e A Ny

X e, (Kp) pm, (K2) o, (K3) o, (Ka) S, 4k, 4 kg K 0 (10)

In deriving Eq.(10), use has been made of the normalizationG(X X' )=s"2B(x,x")
1 [ ,e**d®x= 8, and of the reality conditionu ,(—k) ’ ’
=(—1)"ur(k) for the field Q(r). For the transformed B ~ £y ai(ky xtkyex')
Hamiltonian, Eqs(4) and (5) read _kl%ql k§12 Mml(k1)®Mm2(k2) elflar e
ki<A ky<A
z- [ Duexp—nm, 1 X (k) (), 12

and the dimensionless correlation function is given by where
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. average over the unit sphere of the fourth-rank tensor
(e, (ko) iy (k) ) =Z f D prtin, (Ke) i, (K2) [My(k)®M* (k)] with a function depending ok- z yields a
uniaxial tensor. This, in turn, is decomposed with respect to a
xexp(—HIT). (13 pasis of fourth-rank uniaxial tensors
A is the dimensionless cutoff and Du 2 2 | L
=1k [\v/2mdpum(K)]. The moduli of all wave vectors en- MP= > (ml m, 0>Mm1(2)®Mmz(2). 17
my ,ny

tering sums in the Eq.10) do not exceed\.
Here{X,y,z=(x—x’)/|x—x’|} is the local, orthonormal tri-

IIl. GENERAL ANALYSIS OF THE REAL-SPACE pod of vectors and
TWO-POINT CORRELATION FUNCTIONS
IN THE ISOTROPIC PHASE ( 2 2 L)
In this section, we define correlation functions that we are my my| 0

going to calculate for chiral isotropic liquids. We restrict our-
selves to the most important and the simplest of correlatio@re Clebsch-Gordan coefficients. There are five such tensors,
functions, namely, to the two-point correlation function corresponding td =0,1,2,3,4, which we present in the Ap-
G(x,x"). It describes processes taking place in isotropic apendix[Egs.(Al)- (A5)] Under rotations, these transform as
well as in anisotropic liquids that are related to fluctuationsspherical harmonic¥§-, and these are orthonormal:
in the alignment tensor. Leading terms of the light scattering
amplitude as well as of the optical activity of chiral liquid ML* L) = 2 (ML)* (M(L’)) =5,
crystals serve here as examples. Moreover, invariant tensors  © O s 0 eyt N0 Jafys BLLT
extracted fronts can be used to define phase chirality, where (18
the latter issue is being widely discussed recently in the lit-
erature[6,10,11. Knowing real-space properties 6(x,x’)  The integration in Eq(16) is performed using the quaternion
would allow for comparison(and perhaps for finding a parametrization of the tripofé, 7,k}. Alternatively, one can
bridge) between computer simulations on model chiral liquid perform a Legendre polynomial expansion of the exponential
crystals (e.g., simulations of Memmefrl1]) and the phe- function in Eq.(16) and carry out integration by parts. With
nomenological theory. Below, we shall give an explicit for- both methods, the final result for the real-space correlation
mula for this correlation function in the isotropic liquid, in function (14) reads
terms of its fourier modes, and show that these can be
expressed as an integral overinvolving products of five
elementary correlation functiod$u,(k)|?) with terms such G(x—x")=
as cp,=cosklr—r'|)/(klr=r')" and s,=sinKr—r'|)/
(k|r=r"p".

For an isotropic fluid,G is invariant with respect to a
global translation and a rotation about x’. These symme- 2

a2 <<( ) >>

4
(277)2 2 GH(x-x'hMP (@), (19

where

try requirements reduce E@12) to a simpler one, which

(20)
reads

G(x,X")=G(x—x") .
G=i G‘Rl’=ﬁ<<<2 G_,~2G,+G_1-Gy)uy),

(277 k2 Gm(K) M (k|x—x'|,2)dk 21)

(9 G 1<<(2G +2G,—2Gy—G;—G_;) U,)

- B —2Gy—G;—G_,) U,

with \/ﬂ 2 2 0 1 1 2
(22

Gm(K)=( | um()[?) (19
i

and G<3>=iGQEE«(G,Z—GﬁZGl—zG,l)u3>>,

(23

~ 1 . . o e
Mm(k|x—x’|,z):Ef dzk[Mm(k)®M:ﬁ|(k)]elk\X7x k-2

1
(16) G(4):\/_7—0<<(G_2+G2+6 G0_4G]__4G—1)u4>>'

where z=(x—x')/|x—x’|. While general formulg14) de- (24)
pends on details of the five elementary correlatighgk),
the angular integral$16) can be carried out explicitly. An  with
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_ 9 coupling will clearly be demonstrated. We start by noting
Up=S1, U1=—|P1(|&(—kr))31=01—32, that the free energy4) has an upper bound given by the
Bogoliubov-Hellman-Feynman inequalifiL2]

UQZPZ(i%)Slz3CZ+Sl—353, (25) FgFtria|:F0+<H_H0>01 (31)
where F is calculated from Eq(4) with the trial Hamil-
. tonianH, as well as the averagéd—Hg)o. One can prove
Ug= —i Ps( i m) $1=C1—15¢3-635,+15ss, (260  the inequality(31) with the cumulant expansion up to second
order. The inequality becomes an equality fbg=H. It is
J important to note that the choice of the trial Hamiltonldp
Uy= P4( i m) s;=10c,—105¢c,+s;— 4553+ 105ss, is determined by the possibility of evaluating the path inte-
27) gral (11) exactly. Any adjustable parameters introduced in
Hy are best chosen so as to minimize the right-hand side
A (RHS of the inequality(31). In order to carry out perturba-
((Gmun»:j k?G (k) up(k|x—x’|)d k. (28)  tional calculations, we choose an effective quadratic Hamil-
0 tonian depending on five variational paramet&rs:

P s are Legendre polynomials. Note that, in reciprocal as 1
well as in real space there are only five different correlation Holv= 7 > AL FF(MK) 1P m(K)|2, (32
functions(modes. In reciprocal space, these are 1Bg,(k) m.k

functions while their counterparts in the real space@e, | pere the chosen form resembles the structure of the qua-

Egs.(20—(24), dratic part ofH, Eq.(10),
(2m)? , .
G =——G(x~x')-M{*. (29) HZ/UI%;( {rnt (MK em(K)[ (33

The correlation functions in real space provide an eleganlt_|ere
classification of the modes, which are read off from the for- '
mulas (21)—(24). In particular, we find that the modez)
and G associated with the axial tensolk4{) and M{®, f(m,k)z(
respectively, exisbnly for chiral systems, and disappear for
racemic mixtures. These show that chirality locally induces d
polar correlations GV), even in the absence of the dipole an
moments. As follows from numerical analysis presented in «2m? 1
the following section, the leading correlations in the isotro- Tm=t———, pm=1+=p(4—m?). (35
pic, chiral liquid are given byG(®, G@, andG®), while 4pm 6

3 4 : S,
G )_andG( ) are less important. In the l'm'(to;)f —xand  Equation(32) is a direct generalization of Eq10) in Ref.
for fixed A, all correlations vanish exces™™, which is 2] with the trial Hamiltonian(32), the calculation of the

KM

2\pm

- km) (34)

given by RHS of Eq.(31) is carried out in a similar fashion as in Refs.
1,2]. One finds
o0~ 2,0 oo,
B\ mEe vs?\5 . —T ¥Fe=InZy= >, EInL (36)
(30) om0 k25 A+ f(m k)]

Although correlation function$20)—(24) are easily acces-

sible, e.g., in computer simulations, we are not aware of anﬁlnd

systematic studies of their properties for chiral liquids. In 14

particular, irreducible part&{;’ andG? being proportional  (H—Hg)g= | 7= Am+ = > Smr(Am) b Sm(Arm),
to chirality « could be used to introduce a measure of phase m 155

chirality. (37

IV. MODEL CALCULATIONS where

We closely follow the theory exposed in our previous 1 D o A k*dk
publications[1,2]. However, because the order parameter Sm(Am)_Z . (lm(K) >Ho_ﬁ o A +[f(mK)]?2
components are coupled in the isotropic—BPIIl pretransi- " '
tional region, we include all five helicity modes into the the- (39
oretical scheme and carry out the analysis to leading order ofherefore, we can improve the previous approg2h by
the cumulant expansion. The importance of the mode-modminimizing the (dimensionless trial free energy Fyiqa
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=—T In Zy+({H—Hg), with respect to the five variational pa-
rametersA, for fixed relative temperature energy scale of
the fluctuationsZ, relative elastic constant, and cutoff A
=n«k with n varying from 1 to 4[2]. The A,,Y? parameters
are the correlation lengths arfg},(A,,) is the self-energy
function associated with the mode As already mentioned
before, the cutoff parametér has to be introduced to elimi-
nate modes that are not described by the mesoscopic Hami
tonian. But, as we will show, in a reasonable range for the
cutoff radius, the calculations yield qualitatively similar re-
sults and quantities, such &%,G® or the optical activity,
are practically independent of the cutoff far=3. The di-
mensionless absolute temperatdrés close to the clearing . , . . . . .
point temperature, but we find it more convenient to intro- -10 -5 0 5 10
duce the parameter=7/(607?) used in previous publica- temperature T,

tions[1,2]. A thorough discussion of all parameters exgept
which is not present fom=2 mode, is found in Ref2]. As
concerningp, it is estimated with the help of the results
given in Ref[13]. By employing the transformation from the
tensorial to the director picture, we find that 6kq1/(3Kss
—kq1t+Ksz3), wherek;; are the Oseen-Zoher-Frank elastic
constants. Choosing typical values fhf in the nematic

phase 14], we obtainp~2.8. On the other hand, close to the absolutely stable for all cases witk,,>0. Most probably,

nematiq-isqtropic phasg transition, 'these can 'aII be take{here exists a region in the parameter space where the cho-
ehqualzlelgmgpwz. Estimates of ?tlr?sonllflgd thst_erdshow lesteric phase or cubic blue phases take over, but inclusion of
that p~1 for MBBA [15]. Our analysis will be carried out 4 these phases into the perturbational scheme introduced
for p between 0 and 3. We show that the paramptés of o6 is quite difficult and has not been done as vyet.
secondary importance for the isotropic liquid. Typical numerical solutions foA are shown in Fig. 1.

In order to obtain th? equilit_)rium frge energy, and_ hencerpege |00k gualitatively similar to those obtained in R&f.
also the thermodynamic functions of interest, the trial fre owever, a closer inspection of the figure in the vicinity of

energy has to be minimized with respect to the variationaTz%O shows the differences. This is best illustrated in Fig. 2,

parameters\, . It leads to nonlinear equations whereA, calculated with five modes is compared with the
28 39S case where only then=2 mode was retainef2]. We note
Tp—Ap+ EZ Sm(Am) (%szo. (390 that both theories give similar results at high temperatures
m p and/or high chiralities. However, these differ significantly for
7,~0, where a qualitative change of the correlations takes
place. We find that the extra modes couple with each other,

In A,

FIG. 1. Dependence of the variational paramétgs A + 7, on
the relative temperaturs, for «=0.2,n=1, p=0, and forx vary-
ing between 0.25 and 2.0. Curves are parametrized by chirality

that solutions foA, satisfyA,,>0 (m=—2,...,2).Under
these circumstances, the liquid state is at least a metastable
one. We cannot prove, however, that the isotropic liquid is

Differentiating Eq.(38) with respect toA,, one finds that
dS,/3dA,<0 implying that Eq(39) becomes reduced to a set
of five self-consistent equations:

3 T T T T T T

28
Ap=7p+1—5§rr:, S(Am). (40)

D—oo
oo

By substituting A,=A+7,, these are simplified to one
equation as

A:i—zZ Sy(A+ 7,)>0. (41)

Such a simple reduction exists only in the lowest-order cu-
mulant expansion. We find thak,,=A_,. Additionally,
within the stability limit of the Hamiltonian(1), the domi- ~ —  \ \\_  ™~~o_ _
nant correlation length corresponds to time= =2 modes. . . e
The smallest correlation length is associated with the mode
m=0. Also note that in the absence of fourth-rank terms in temperature T
the Hamiltonian the theory reduces to standard Gaussian cor- FIG. 2. Temperature variation df,/A, whereA is taken from
relations withA = 7;,. Ref.[2]. Calculations are carried out far=0.2, n=1, p=0, and

A numerical analysis of the model requires stability of thefor « varying from 0.25 to 2. The curves are parametrized by
Gaussian trial Hamiltoniari32). This is guaranteed given chirality «.

~..
~~.
Sre .,
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+
3 -\ mem,o
\
\
~
T
Q
~ »
<
=
Q
N~ .
<N \, s~ 03: .
\ ; N 1 s
: ! -10 0 10
0,8 | \.\. i T2 i 2 4 6 8 xm
N
. , > , . , . FIG. 4. Dependence of correlation mofié,']y0 multiplied by the
-10 -5 0 5 10 relative reduced distance,, on x,,. Curves are parametrized by

T, An=1,3 andg,=1. The inset shows,, for g,=0,2,4 and

A n=3. Thicker lines correspond to larger values of the parameters.

FIG. 3. T t iati A(p=0). Calculati
G. 3. Temperature variation df(p)/A(p=0). Calculations The limiting curve,A ,=, q,=1, is shown as dashed line.

are carried out fow=0.2, n=1, and fork=0.5,2 (insed.

thus enhancing correlations in this regime, which is in line 9
with experiments in the vicinity of BPIll—isotropic phase mz_z—mz,
transition(see, e.g., Ref.7]). A similar behavior is observed Em T (k=kpy)
close to the isotropic-cholesteric phase transition as will be

discussed in our forthcoming publicati¢t6]. Also please whereg,,=g_, andk,=—k_,. The model calculations of
note that the relative elastic constanis of secondary im- the preceding section, Eqé31)—(41), are special cases of
portance for the properties of high-temperature phase ( Eq. (43) with

>0), as illustrated in Fig. 3.

(43

Finally, we comment on the possibility of a phase transi- A 1 27 Km
tion between BPIII and the high-temperature isotropic liquid. &,°=—, Pm=1+gp(4— m?), gm=—1, km=2—-
Unfortunately, such a phase transition is not realized in the m Pm Pm
lowest-order cumulant expansion calculations. This is recog- (44)

nized on the relationship betweep andA, : Also, the ordinary Gaussian theory is recovered from Eq.

a7y 28 9S,(A)) (43 if we takeAp =17, .
A5 A 0 (42) Substitution of Eq.(43) into Egs. (20)—(24) yields the
' ! formulas for the correlation mod&a), L=0, . .. 4, which
which means that a critical poin#,/dA;=0) and a first- ~are linear combinations ofi-(ant) symmetrized averages
order phase tranS|t|oer-p/aA,<0) are not present in our Gm e
theory. It would require to take into account higher orders of

the cumulant expansion as demonstrated in Rgf. How- Ap 1
ever, as we show, by studying the correlation functions, theG “:J 2 + un(g xmdq
specific heat, and the pretransitional optical activity, the ex- 70 1+(d—0gm?® 1+(q+0m)?
istence of the two differently correlated regions in the ther- £
m

modynamic space is evident even in this order of calcula- = —(((Gm_G m) Un), m=0. (45)

tions. The results are presented on two plots for each case.

One for cutoff parameten=1 and the other fon=3. The

different lines on each plots correspond to different values ofHere, the model parameters are measured relative to the di

the chirality changing fronk=0.2 tox=3, but many quan- mensionless correlation length,: Xnm=|x—X'|/&n, dm

tities of interest are practically cutoff independent fer =Kkynén, Am=Aé&n. The functionsGri’n could be expressed

=3. in terms of singSi) and cosindCi) integral functions but, as
After introducing the perturbational scheme, we use it tothe formulas are lengthy, we do not present them explicitly

discuss the correlation functiorB"), the optical activity here. Instead, a typical behavior Gf; , on the relative, re-

tensor, and the specific heat. Also, we calculate the averagefliced distance,, is shown in Figs. 4—7.

value of the chiral invariant in Eq2), previously used to We observe that the real space behavio@ﬁx,f splits into

discuss ordering in chiral isotropic liquid8,19]. three classes represented @y G, o, (b) G,,,, G4, and

(© Gp1, Gps (M#0) functions. A major difference be-

tween them is their cutoff dependence, which can be studied
We assume that the correlation functior®, are by analyzing the limitA,,— . More specifically, it is found

Lorentzian-like with that only the functions belonging to the classasand (b)

A. Correlation functions

061705-6
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-Gm1 9 '

FIG. 5. Dependence of correlation modeG,, ; on the relative
reduced distancex,,. The curves are parametrized b¥,
=1,3,10» andq,,=1. The inset shows-G,, , for 9,=0.5,2,4 and

PHYSICAL REVIEW E 67, 061705 (2003

3| ~Xm m.2 I —xmé$,2
2/ p Ao~
1 ‘ 0 5 xq 10
0
2 4 6 8 Xm

FIG. 6. Dependence of correlation moele(me;L2 on the rela-
tive reduced distancex,,. Curves are parametrized bw,
=1,3,10» and q,=1. The inset shows—me,J,“L2 for qm

A,=3. Thicker lines correspond to larger values of the parameters=0.5,2,4 andA ,,=3. Thicker lines correspond to larger values of

The limiting curve,A ,=, q,=1, is shown as dashed line.

show, for smallx,,,, strong dependence on the cutoff. In par-
ticular, G;,O [see Fig.(4)] diverges linearly withA, asx,
tends to zero:

€ X" COY O Xm) + U SIN(Qy Xm) |

lim G' =
m,0 Xm

Ap—®

(46)

All remaining functions of classel) and (c) disappear by
symmetry whenx,, tends to 0 andA,, is finite. As high
momenta are important for small values x,, we expect
that overall cutoff dependence of the functiofis and (c)

should be of secondary importance. Indeed, this is the case

for the class(c), Figs. 5 and 7, where contributions of the
high energy modefargek vectors partly cancel out due to
G, — G_,, dependence under the integdb). But, as the
limits x,,—0 andA ,,— do not commute, a cutoff depen-
dence could also be observed for a smgll. To be more
specific, let us concentrate on the parameter dependence
G,1 function in a more detailed way. We find that the first
peak of G, ,, being located aky~4.49/A, (An=3), re-

the parameters. The limiting curva,,= is shown as

dashed line.

“, Gn=1,

both G, ; andG,, ; vanish with vanishing chirality, with the
leading term being proportional wm,.

FunctlonsGm , and Grn 4 look similar toG;, m,0 €Xxcept that
these vanish fox,,=0 and finiteA,,. A first peak ome’
andGm4, being located at};~1/A,,, is due to high-energy
modes and diverges linearly with,,. Again the limiting
cases could easily be found. For example,

; +
lim Gp»
Am—mo

B 7T{-3+ e’xm[3+(1+Clﬁ1)Xm(3+Xm)]COSCIme)}
- (1+0%)x5,

| me g3 1+qm)x 18I o)

(1+qm)

(48)

of

Note that the formulas derived here are independent of the

sults from a combination of chiral interactions and high en-details of a model used to calculatg, .

ergy modes. Fox,>x,, the functionsG,,, could be re-
placed by their\ ,,— o> counterparts and these fall off to zero
for xp,—0 (xm<xm). WhenA ,—<, we find

lim G,

Ap—

_ We_xm[(1+ Xm) SIN(Xm Am) = Xm Om €O Xy Om) ]
2 1
m

X

(47)

where the peak aty, for finite A yields a nonzero value of
Gp,1 at X, =0 for the limiting casg47). A similar behavior
is observed forG, 3, as shown in Fig. 7. Note again that

Now, by taking appropriate linear comblnatlons(éﬁn
functions[see, Eqs(20)—(24) and (45)], the properties of
G®s could easily be studied for the mod8ll) and(32). In
particular, we find that the temperature dependendd(bfs
provides a clear distinction between the two differently cor-
related regions in the thermodynamic space as at low tem-
peratures the correlation modes are much stronger than those
at high temperatures. The purely chiral functidﬁ%’ and
G are found weakly dependent on the cutoff for distances
above the first peak. The dominant contributions come from
fluctuations on the sphere &fvectors, where (m,k)?, Eq.
(34), is minimal, that is, fork~«. These fluctuations are
induced by the presence of chiral interactions and their con-
tribution, measured bB$) and G§), disappears for non-
chiral systems. In this sens§{’ (or functions involving
G(l)) could serve as a measure of phase chirality. Further-
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FIG. 7. Dependence of correlation mo@, ; on relative re- temperature T,

duced distance,,. Curves are parametrized by;,,=1,3,10 and
Om=1. The inset show& ; for q,=0.5,2,4 and\ ,=3. Thicker
lines correspond to larger values of the parameters. The limiting FIG. 8. Dependence of optical activity coefficienigand y, on
curve, A, =%, g,=1, is shown as dashed line. temperaturer,. The solid line corresponds tg,, whereas the
dashed line describes y,. Parameters used are=0.2, p=1, «
more, the position of the first peak could be used to specify=0.25, andn=1.
the distance above which chirality-induced modes dominate.
Finally, we note that the effect of the paramejer(p 1 Ao
. : . . d A - Tk
>0) on the correlations is to introduce weights for linear :_f dqqG4(q)—G_4(q)] —
combinations ofG, , enteringG™) and to rescale correla- - 1
tion lengths. As th|s rescaling goes throuygh, the effect is 12| 1+ EP

weak for experimentally accessible values of this parameter.

The only qualitatively different case is that =0 (p, 1 24 1
=1). For p=0, the contribution toG? and G* of high- Yp=— — dq [Gl(Q) (q)]__f dg-
energy modes largely cancels out due to subtractions of dif- 18Jo 9Jo 'q
ferentG,, , functions[see Eqs(22) and (24)]. K[Go(q) =G _»(Q)]

B. Pretransitional optical activity

The explicit form of the pair correlation functiofeither A=e  DTiear 2
in Fourier or in real spagas a different step towards calcu- - —

1/4 1/2

A1+ K2

1
1+
5P

1
1+
5P

lations of experimentally accessible quantities, such as inten- 9 \/A—Z(A2+ K?)
sity of scattered light or optical activity. We concentrate here
on the optical activity in the isotropic phase.
The optical-activity tensor of an isotropic fluidy; 1
=€y, measures, according to Land@i7], the depen- 1+ >P
dence of the dielectric tensor on the variation of the local n
electric field. The corresponding expressions for cholesterics
and blue phases have been discussed by Bensihah \/A—1[4
[18]. They calculated the leading term 4g assuming that
the maximal correlation length @& is negligible compared (52
to the wavelength of the incident light. Their formula has ] . .
subsequently been generalized by Lubensky and $&8o  Here, & is the average dielectric constant of the system and
the case when the isotropic fluid is close in temperature té is the wave vector of the incident light in units &f*.
the cholesteric or blue phase. Following the derivation giverNote that in Eq.(49) not only modes withm==1 are
in Refs.[18,8] one finds that present but also those witlhh= =2, in agreement with ex-
periments by Battlet. al.[4] and Enniset al.[3]. The angle
of rotation of the light is given b)¢=(k§/2)’y. Also, please

a(m 5 —iax observep dependence of.
Y lome £ f d*XG oy 5(X)X, (930, — 0% 5, Does the optical activity change sign, as observed experi-
OSR mentally? The optical activity depends on the product of
g2 chirality and correlation length. For relatively low chiralities,
= 2 (vt YK+, (49)  there are long-range correlations in the BPIIl phase. Because
T €0éR small changes inc cause a big difference ok, y=¢ is
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temperature T, temperature T,
FIG. 9. Dependence of order parameferon temperaturer,. FIG. 10. Dependence of specific heat on temperatyréor «
Due to a negative value af, the plot shows its absolute valus. =0.2,p=1, k=0.25, and fom=1.
Parameters used are=0.2, p=1, andn=1. Chirality x varies
from 0.25 to 2. already discussed before, no phase transition between both

regimes is predicted by the theory. Note that the term pro-
valid. This picture turns over where chiralities are largeportional toA does not depend ofy,.
enough. In this situationy~ «. Additionally, due to second-
order term in Eq(49), optical activity can change sign for

large enough value d&f,. A model calculation of the first two ) ) ] o
terms of total optical activity is shown in Fig. 8. The relatively simple form of the effective Hamiltonian

H’ allows us to calculate practically all experimentally ac-

cessible quantities. We illustrate this further by calculating
C. Order parameter ¢/ d* €y Qu 9 Qu) the specific heat of the chiral isotropic liquid. For our case, it

Another quantity, which could give a clear distinction be- reads

tween the isotropic phases of chiral liquid crystals is the

(dimensionlessorder parameters=£g/s*((VXQ)- Q) in- 9*(Flv) dAm IS

troduced in Refs[19,8]. Its definition shows that it measures C= _TFWT% 9t Ay’

local twisting power

D. Specific heat

(53

and does not show a singularity. However, there exists a
p=2> mKGn(k) clear maximum in the specific heat fes~0 and at moder-
k,m . .. . . . .
ate chiralities, Fig. 10, supporting previous observations that
4 the structure of short-range correlations changes in this re-
=47kT) | 16+ T2 A gime. The effect almost disappears fer-1. Though the
1+ _p) model does not display a singularity or a discontinuity char-
2 acteristic of a phase transition, the behavior is typical of a
pretransitional regime where enhance of correlations is in-
dicative of a nearby critical point. Such a critical point can
be accounted for by the third-order cumulant expansion, as
shown with the help of calculations with a scalar order pa-
rameter|1,2].

2k?

—6VA,+
\/_2\/A—2

+2 +

1+ Ep

1 1/4 K2

><_
3 2

174
V. SUMMARY
- 1+§p) VA,
We have presented a systematic approach to study the

) effect of correlations between the fluctuating helicity modes

+0' (52 of the alignment tensor in the isotropic phases of chiral lig-
uid crystals. One of the main advantages of the present ap-
proach is that it treats the fluctuations of the various modes
on an equal footing and thus it allows one to compare their
Dependence ofy on the temperature, is shown in Fig. 9.  relative importance. The only other calculations in this direc-
Note that ¢ behaves in a similar way as the correlationtion we are aware of are those for nematic liquid crystals by
length. More specifically, there are two regimes characterPriest and Lubenskj20] and by Wang and Keyd&1]. More

ized by small and large values of this parameter, but, asecently, some aspects of tensor fluctuations were also con-

1
A
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sidered for spontaneously ordered chiral phases, relevant expansion cannot account for a “sharp” phase transition be-
bent-core liquid crystalg22]. tween the high-temperature isotropic liquid and the BPIII,
Here, the exact representation of the real-space two-poirgven with all five modes included. Thus going beyond the
correlation function has been derived to show that the irreleading order seems essential.
ducible partsG{’ andGE) of G can be used to characterize  Indeed, as we showed in our previous publicatifhg],
phase chirality of an isotropic liquid. These quantities, espethe third-order cumulant expansion with a simplified Gauss-
cially G&), seem more adequate for that than, e.g., opticalan trial Hamiltonian allows one to recover a true phase tran-
activity. The reason is that the leading term of the opticalSition between the isotropic phases within the Landau—
activity depends upon secondamy=+1 modes, while the Glnzburg—de' Gennes Hamiltonian. T.hough, as we believe,
most important for chiral liquids arm=+2 modes. Terms Such calculations with the exact Hamiltonian are relevant to

that enteiGY) contribute to the intensity of light scattered at OPtain a fully consistent picture of the chiral isotropic
wave vectorg and could, at least, in principle, be extracted Phases, many of the results presented here are expected to
by incorporating appropriate polarization vectors for the in-fémain unaffected. One of them is the detailed analysis of the

cident and the scattered lights. Also please note that nonzef§'Teélations as given in Secs. Il, Ill, and IV ¢ and presented
values ofGY and G&) indicate that chirality induces local in Figs. 4-7. Clearly, these are independent of detailed mod-
polar ordering even in the absence of dipole moments. Bot Is usgd to ca!culatAm. The mo_del shquld al_so be correct at

functions vanish for nonchiral and nonpolar liquids and east in the high-temperature .|sotrop|c retglme_wh(_afe it be-
could easily be determined, e.g., from computer simulation§CMeS convergent to the previously studied, simplified case

on molecular models. Although this has not been done so fa 1,2]. Finally, the improved calculations cannot remove cor-

such simulations would be of interest as these could providéelatlons predicted by the first-order analysis and the true

a connection between microscopic modeling and phenon‘Phase transition of such an improved analysis would be ex-

enological approach. pected forr,~0 (see, Figs. 1,2 and 10This expectation is

The theory has been illustrated with calculations that ar§UPPOrted by Fig. 5 of Ref1] and Fig. 11 of Ref|2], where
complete up to the first-order cumulant expansion. The Cal'ghe phase transition of the simplified model is also observed

culated quantities such as the correlation lengths and the coler 2~0. . .

relation functions of the tensor order parameter, the optical One of the new features of higher-order calculgtlons could
activity, the chiral order parametef, and the specific heat e a momentum depend.encecq; parameters, Wh'.Ch would
show two distinct isotropic regimes. The first one is highly "€Place nonlinear equatiorig0) by integral equations. Ex-

correlated and appears at low chirality and/or temperaturBeriments by Koistinen and Key¢g] seem to indicate that
and differs from a weakly correlated one that is stable,at ©m May indeed be more complicated function than a simple

>0. Furthermore, we proved that te#2 modes are of Lorentzian.
secondary importance except closerte=0, where the two-

point correlations change their character. In this regime,

which could be considered as a sign of a pretransitional This work was supported by the Polish Proj@¢BN) No.
BPIll—isotropic regime, the correlations between the compos P03B 052 20 and by the project C12 of Collaborative
nents of the tensor order parameter are important, in agre®esearch Center 382 of the Deutsche Forschungsgemein-
ment with experiment. However, the lowest-order cumulantschaft(DFG).
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APPENDIX: UNIAXIAL BASIS TENSORS

We list below:

1 N A A A A A A A A N A A A a A A A A A
M) =——{6 (X@XRXDX+YRYQYRY+Z070707) — 2 (X®X+ YR Y+ Z82) @ (X® X+ YR Y+ 20 2)

65
+3[(XQY+YRX) @ (XD Y+ YR X) + (XD Z+ Z®X) ® (X® Z+ 29 X) + (YR 2+ Z8Y) @ (Yo 2+ 28 ) ]}, (A1)
Mgl):z_W)[Z(f@i—Q@Q)@(§<®§/+§/®§<)—2(>2®§/+§/®§<)®(>2®>2—§/®§/)+(§<®2+2®§<)®(§/®2+2®9)
—(Yy®Z+79Y) @ (X®Z+ 20X)], (A2)
(2)1"""""’""‘ o o (oG L ot O o N L Ao o (o oS L S D
Mg =6—\/ﬂ[4x®x®(x®x—2y®y+z®z)+4z®z®(x®x+y®y—2 Z®2) +4yRy® (YRY—2 X® X+ ZQ 2)
+B(XQY+YRX) ® (X® Y+ YRX) — 3(X® 2+ Z8X) ® (X® Z+ 28 X) — 3 (Y® 2+ 28 V) ® (Y® 2+ 28 V)], (A3)
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Mg3)=2m[(i®2—§/®§/)®(§<®§/+9®i)—(§<®§/+§/®§<)®(i®i—§/®§/)+2(§/®2+2®§/)®(§<®2+2®§<)
—2(X® 7+ 720 X) @ (Yo 2+ 29Y)], (Ad)
M{D = ! XX+ YRY— 478 2) @ (XQ X+ YO Y— 47 Z) + 2XQD XXX X+ 2YQ YR Y@ Y — 820 28 70 Z
o—zm[( y®y ) ®( y®y ) yRyey®y
+ (XQY+YRX) ® (X® Y+ YR X) — 4(X® 2+ Z8 X) ® (X® 2+ Z9X) — A(YyR 2+ 20 Y) ® (Yy© 7+ 78 V) ]. (A5)
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